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PREFACE

The Project RAND research program consists in part

of basic supporting studies in mathematics. This

Memorandum analyses a new method for the solution of

equations of the form

u = f + XT(u)

where T is a linear transformation. Such equations are

of great importance in mathematical physics.
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SUMMARY

A large number of problems of mathematical physica

may be reduced to the solution of the equation

VI! u = f + XT(u)

where T is a linear transformation. The present paper

reduces a recent proposal to treat such problems by means

of continued fractions to a more tractable method involving

series, and demonstrates the convergence of the resulting

series over a larger domain than the classical Neumann

series.
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ANALYSIS OF A NEW FORMALISM IN PERTURBATION THEORY

1. INTRODUCTION

A new method has recently been suggested by Bellman

I and Richardson [1] for studying equations of the form

)u = f + XT(u)

where f is a known function, u is unknown, X is a

parameter, and T is a linear transformation. This

suggestion is based on the observation that, if u is a

solution to (1.1), then

(1.2) (u) T 'L-L + T [1 Tn /Tn (f)1
Tn+l(u) Tn+l(f) Tn+l(u)/Tn+2(u)

Thus, if the value of Tn(u)/Tn+l(u) can be determined,

the value of u/T(u) can be determined recursively, and by

combining this with (1.1), the value of u itself may be

computed. If we make the assumption that Tn(u)/Tn+l(u)

equals Tn(f)/Tn+l(f), then carrying out the above

computation gives a sequence of convergents to a certain

icontinued fraction. One could analyze the method by

considering this continued fraction., but in what follows we

Tshall show that it is quite easy to evaluate and analyze

P the convergents themselves.

2. PRECISE DEFINITION OF THE CONVERGENTS

Characterize the function un as follows:

n___________
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Tk(uk) Tk(f)
(2.6) Tk~l(uk) -+ k-l(f)/Tk(f

Tk(uk) Tk(f) .X Tk(uk)/Tk+l(u 3
is equivalent to replacing Tk(f) (in the formula of form

(2.4) for uk-1) with

(2.7) [Tk(f)] 2 Tk-l(f)
k-l(f) _+ X [(k (f))2  - 1 (f) Tk+l(f)J

If we carry out this substitution, we find that Uk

also satisfies the formula (2.4), and thus the formula

holds for all n.

3. PROPERTIES OF THE un

Theorem 31.1 If Tn+l(f) = ATn(f) for some . 4 I/x

then u is a solution to (1.1).
n

Proof: Substitute (2.4) directly into (1.1).

Theorem 3.2 Within the radius of convergence of the

Neumann series, the sequence (u ) converges to a solution
n

of (1.1).

Proof: The radius of convergence of the Neumann

1series is the absolute value of the eigenvalue of T

having the smallest norm. Thus if X is less than this

eigenvalue we may, by taking n sufficiently large, make



the difference between un and the nth partial sum of the

Neumann series as small as we please. Thus, the sequence

(u n converges to the same limit as the Neumann series,

which is a solution of (1.1).

Theorem 3.3 If f = f1 + f 2 , where T is continuous,

T(fl) = 4ifl and IT (f 2 )1 - 42 ITkl(f 2 ) (for k=l, 2 ... )

i > A2 > 0, X4l/w 1 . <i/Vt2 , then (un is a Cauchy

sequence convergent to a solution of' (i.I).

Proof: If k is sufficiently large, it is a matter

of straightforward computation to show that

(Tk(f)32 2k 2

T k(f) - XT +l(f) 1•3. k f x/k+lf1

2• I 11 (41--21 k
<( 2i I 2 = C/12

Say that (3.1) holds for all k > N. Pick m > n > N.

Now consider

u. - U m-n-i Xm-n[Tm(f) 12
m n n~i(f) xi-+L

> n i=O fTm(f) - XTm+l(f)

[Tn(f))
2

T(f) X M(f)

Simple computation shows that
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m--n-r-i m-n[Tn(fl)] 2

(3s Tn+i(f 1 )Xi +i=o xTm+(fl)_ nl )

- [Tn(f l )] 2  [m--n--I +

n(fl)- XT n+l(fl) i=O 1-1• 1X

fl= 0

Thus it follows, from (3.1) and the linearity of

T, that

(3-4) Um--Unjj : U Un s

xn n

rni-n-i n

< IA>' Ki-~ I2 IflI + I)' I~-nC~ I'2

±~~~~ CkP '!L 2L 2  -~ CJ

Since I XA 2 1 < 1 by hypothesis, this establishes

that the sequence fun ) is a Cauchy sequence. Now to show

that it converges to a solution of (1.1), we have only to

show that for any E > 0, we can find an N such that if

n > N, then

1 U n -XT(Un) -fH! < E



This is equivalent to showing that

(3-5) 1,,In+l T n+l (f)T n(f)- T rTn(f)T n(f) ] < E

T n(f) -- T [TnT(f) - XTn+l(f)

By applying the identity

(3.6) Tn(f) + 2 2)
Tn(f) - XTn+l(f) , - X~ l (l-Xfl)(Tn(f)--Tn+l(f))

we reduce (3.5) to

(3"7) X lntl Tnl(f2)- /il( f2) XTn (f2l)--/ITn(f2)

n l XTn(f)/ Tn+l(f) L_ Tn+l(f)/Tn(f

But since by assumption IkXn! Tn(f 2) can be made

as small as we please by taking n sufficiently great,

it follows at once that (3.7) goes to zero as n becomes

large. This concludes the proof.

4. EXAMPLES

A. If T(f) = kf, where k is some constant, then

by Theorem 3.1, every un is an exact solution to (1.1)

(provided X 4 1/k).

B. Let the transformation T be the matrix

which has eigenvalues 1 and 3. Then the sequence (u will

n
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converge by Theorem 3.3 to a solution of (1.1) if JlX < 1 ,

X 4 1/3. If f is an eigenvector of T, then each utn

will be an exact solution of (1.1) unless X is the

reciprocal of the corresponding eigenvalue. This example

shows that (u n) need not converge if X is greater than

the reciprocal of the second largest eigenvalue.

C. The formula may be applied to a wide variety of

integral equations. Even when the Neumann series converges,

the sequence (2.4) will often converge faster.

.
The reader is doubtless aware that the eigenvalue of

a matrix corresponds to the reciprocal of the eigenvalue
of an integral operator (which is the sense in which we
used the term in the proof of Theorem 3.2.)
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